壓敏電阻采購,就選源林電子,型號豐富
壓敏電壓U1mA
壓敏電阻的線性向非線性轉變的電壓轉變時,位于非線性的起點電壓正好在I-V曲線的的拐點上,該電壓確定為元件的啟動電壓,也稱為壓敏電壓,是由阻性電流測試而得的。由于I-V曲線的轉變點清晰度不明顯,多數情況下是在通1mA電流時測量的,用U1mA來表示。對于一定尺寸規格的ZnO壓敏電阻片,可通過調節配方和元件的幾何尺寸來改變其壓敏電壓。亦有使用10mA電流測定的電壓作為壓敏電壓者,以及使用標稱電流測試者,標稱電壓定義為0.5mA/cm2,電流密度測定的電場強度E0.5表示,對于大多數壓敏電阻器而言,這個值更接近非線性的起始點。3. 漏電流IL壓敏電阻器進入擊穿區之前在正常工作電壓下所流過的電流,稱為漏電流IL。漏電流主要由三部分貢獻:元件的容性電流,元件的表面態電流和元件晶界電流。一般對漏電流的測量是將0.83倍U1mA的電壓加于壓敏電阻器兩端,此時流過元件的電流即為漏電流。根據壓敏電阻器在預擊穿區的導電機理,漏電流的大小明顯地受到環境溫度的影響。當環境溫度較高時,漏電流較大;反之,漏電流較小。可以通過配方的調整及制造工藝的改善來減小壓敏電阻器的漏電流。研究低壓元件的漏電流來源是很重要的,為了促進ZnO晶粒的長大,低壓元件中通常會添加大量的TiO2,過量摻雜造成壓敏元件漏電流增大[6]~[9],在元件性能測試時容易引入假象,例如壓敏電壓和啟動電壓偏離較大。測試元件的非線性時,我們希望漏電流以通過晶界的電流為主。但低壓元件普遍存在吸潮現象,初燒成的低壓元件漏電流可以保持在4~20μA內,放置8~24h后,元件的漏電流可以增大到200μA。這樣的元件的晶界非線性并沒有被破壞,但卻表現出非線性低,壓敏電壓也稍有降低的表象。
由于壓敏電阻型號太多,篇幅有限,恕不一一呈現,欲知詳請,歡迎撥打圖片中的咨詢電話與我們源林電子聯系,謝謝!
壓敏電阻采購,就選源林電子,更專業
低壓ZnO壓敏電阻的特性與晶界的結構狀態有密切關系,關于壓敏電阻的顯微結構,人們也以Bi系ZnO壓敏電阻為基礎,建立了不同的模型進行研究,如微電阻模型,即將壓敏電阻等效為包含在多晶材料中的分立的晶界,還有運用薄膜技術制造的單結等來模擬ZnO
壓敏陶瓷的顯微結構材料中主要的相是半導化的ZnO晶粒,許多ZnO晶粒直接接觸,晶粒間沒有其它相,形成了雙ZnO-ZnO晶界(同質結)。由于Bi等大尺寸離子在晶界偏析,改變了晶界的結構,電流通過這些晶界,這些晶界稱為電活性晶界,電活性晶界是決定壓敏電阻性質的關鍵。在三個晶粒的交界處,有時在兩個晶粒(可能有特殊取向)之間,存在粒間相,粒間相在導電過程中大多是電學非活性的。該相主要包括各種添加物形成的化合物。陶瓷材料中的所有成分都可以溶解在粒間相中,在燒結過程中,晶粒交界處可能形成尖晶石晶體,但是它們不參與導電過程。氧化物的改性添加可以改變晶粒電導或晶界的結構及化學狀態,尤其是偏析于晶
界的雜質對晶界活性有很大的影響,因而適當的摻雜選擇對形成和改善非線性起著很重要的作用,而且晶界勢壘是ZnO壓敏陶瓷燒結時在高溫冷卻過程中形成的,燒結工藝直接影響雜質缺陷在晶界中的分布,從而影響晶界化學結構。另外,低壓ZnO壓敏電阻的晶粒尺寸要足夠大,單位厚度的晶界數少,因此低壓壓敏電阻對顯微結構的波動尤其敏感,工藝對低壓壓敏電阻壓敏特性的作用也不可忽視。
源林電子壓敏電阻免費取樣,一個電話搞定!
您好,歡迎蒞臨源林電子,歡迎咨詢...
![]() 觸屏版二維碼 |